Dual canonical bases and Kazhdan–Lusztig polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Dual Canonical Bases

The dual basis of the canonical basis of the modified quantized enveloping algebra is studied, in particular for type A. The construction of a basis for the coordinate algebra of the n × n quantum matrices is appropriate for the study the multiplicative property. It is shown that this basis is invariant under multiplication by certain quantum minors including the quantum determinant. Then a bas...

متن کامل

Canonical Bases of Singularity Ringel-hall Algebras and Hall Polynomials

In this paper, the singularity Ringel-Hall algebras are defined. A new class of perverse sheaves are shown to have purity property. The canonical bases of singularity RingelHall algebras are constructed. As an application, the existence of Hall polynomials in the tame quiver algebras is proved.

متن کامل

The Cluster and Dual Canonical Bases of Z

The polynomial ring Z[x11, . . . , x33] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group Uq(sl3(C)) [8] [5]. On the other hand, Z[x11, . . . , x33] inherits a basis from the cluster monomial basis of a geometric model of the type D4 cluster algebra [3] [4]. We prove that these two bases are equal. This extends work of S...

متن کامل

Dual canonical bases, quantum shuffles and q-characters

Rosso and Green have shown how to embed the positive part Uq(n) of a quantum enveloping algebra Uq(g) in a quantum shuffle algebra. In this paper we study some properties of the image of the dual canonical basis B∗ of Uq(n) under this embedding Φ. This is motivated by the fact that when g is of type Ar, the elements of Φ(B∗) are q-analogues of irreducible characters of the affine Iwahori-Hecke ...

متن کامل

WEB BASES FOR sl(3) ARE NOT DUAL CANONICAL

We compare two natural bases for the invariant space of a tensor product of irreducible representations of A2, or sl(3). One basis is the web basis, defined from a skein theory called the combinatorial A2 spider. The other basis is the dual canonical basis, the dual of the basis defined by Lusztig and Kashiwara. For sl(2) or A1, the web bases have been discovered many times and were recently sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2006

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2006.01.053